Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing
نویسندگان
چکیده
Rapid advancements in stretchable and multifunctional electronics impose the challenge on corresponding power devices that they should have comparable stretchability and functionality. We report a soft skin-like triboelectric nanogenerator (STENG) that enables both biomechanical energy harvesting and tactile sensing by hybridizing elastomer and ionic hydrogel as the electrification layer and electrode, respectively. For the first time, ultrahigh stretchability (uniaxial strain, 1160%) and transparency (average transmittance, 96.2% for visible light) are achieved simultaneously for an energy-harvesting device. The soft TENG is capable of outputting alternative electricity with an instantaneous peak power density of 35 mW m-2 and driving wearable electronics (for example, an electronic watch) with energy converted from human motions, whereas the STENG is pressure-sensitive, enabling its application as artificial electronic skin for touch/pressure perception. Our work provides new opportunities for multifunctional power sources and potential applications in soft/wearable electronics.
منابع مشابه
Highly transparent triboelectric nanogenerator for harvesting water-related energy reinforced by antireflection coating
Water-related energy is an inexhaustible and renewable energy resource in our environment, which has huge amount of energy and is not largely dictated by daytime and sunlight. The transparent characteristic plays a key role in practical applications for some devices designed for harvesting water-related energy. In this paper, a highly transparent triboelectric nanogenerator (T-TENG) was designe...
متن کاملSimulation method for optimizing the performance of an integrated triboelectric nanogenerator energy harvesting system
0.1016/j.nanoen.2 lsevier Ltd. All rig uthor at: School a Institute of Tec . [email protected] Abstract Demonstrating integrated triboelectric nanogenerator energy harvesting systems that contain triboelectric nanogenerators, power management circuits, signal processing circuits, energy storage elements, and/or load circuits are core steps for practical applications of triboelectric nanogenerator...
متن کاملResearch Update: Materials design of implantable nanogenerators for biomechanical energy harvesting
Implantable nanogenerators are rapidly advanced recently as a promising concept for harvesting biomechanical energy in vivo. This review article presents an overview of the most current progress of implantable piezoelectric nanogenerator (PENG) and triboelectric nanogenerator (TENG) with a focus on materials selection, engineering, and assembly. The evolution of the PENG materials is discussed ...
متن کاملHuman skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system.
We report human skin based triboelectric nanogenerators (TENG) that can either harvest biomechanical energy or be utilized as a self-powered tactile sensor system for touch pad technology. We constructed a TENG utilizing the contact/separation between an area of human skin and a polydimethylsiloxane (PDMS) film with a surface of micropyramid structures, which was attached to an ITO electrode th...
متن کاملSegmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy.
We introduce an innovative design of a disk triboelectric nanogenerator (TENG) with segmental structures for harvesting rotational mechanical energy. Based on a cyclic in-plane charge separation between the segments that have distinct triboelectric polarities, the disk TENG generates electricity with unique characteristics, which have been studied by conjunction of experimental results with fin...
متن کامل